547 research outputs found

    Active biopolymer networks generate scale-free but euclidean clusters

    Get PDF
    We report analytical and numerical modelling of active elastic networks, motivated by experiments on crosslinked actin networks contracted by myosin motors. Within a broad range of parameters, the motor-driven collapse of active elastic networks leads to a critical state. We show that this state is qualitatively different from that of the random percolation model. Intriguingly, it possesses both euclidean and scale-free structure with Fisher exponent smaller than 22. Remarkably, an indistinguishable Fisher exponent and the same euclidean structure is obtained at the critical point of the random percolation model after absorbing all enclaves into their surrounding clusters. We propose that in the experiment the enclaves are absorbed due to steric interactions of network elements. We model the network collapse, taking into account the steric interactions. The model shows how the system robustly drives itself towards the critical point of the random percolation model with absorbed enclaves, in agreement with the experiment.Comment: 6 pages, 7 figure

    Multi-scale strain-stiffening of semiflexible bundle networks

    Get PDF
    Bundles of polymer filaments are responsible for the rich and unique mechanical behaviors of many biomaterials, including cells and extracellular matrices. In fibrin biopolymers, whose nonlinear elastic properties are crucial for normal blood clotting, protofibrils self-assemble and bundle to form networks of semiflexible fibers. Here we show that the extraordinary strain-stiffening response of fibrin networks is a direct reflection of the hierarchical architecture of the fibrin fibers. We measure the rheology of networks of unbundled protofibrils and find excellent agreement with an affine model of extensible wormlike polymers. By direct comparison with these data, we show that physiological fibrin networks composed of thick fibers can be modeled as networks of tight protofibril bundles. We demonstrate that the tightness of coupling between protofibrils in the fibers can be tuned by the degree of enzymatic intermolecular crosslinking by the coagulation Factor XIII. Furthermore, at high stress, the protofibrils contribute independently to the network elasticity, which may reflect a decoupling of the tight bundle structure. The hierarchical architecture of fibrin fibers can thus account for the nonlinearity and enormous elastic resilience characteristic of blood clots.Comment: 27 pages including 8 figures and Supplementary Dat

    Normal stresses in semiflexible polymer hydrogels

    Get PDF
    Biopolymer gels such as fibrin and collagen networks are known to develop tensile axial stress when subject to torsion. This negative normal stress is opposite to the classical Poynting effect observed for most elastic solids including synthetic polymer gels, where torsion provokes a positive normal stress. As recently shown, this anomalous behavior in fibrin gels depends on the open, porous network structure of biopolymer gels, which facilitates interstitial fluid flow during shear and can be described by a phenomenological two-fluid model with viscous coupling between network and solvent. Here we extend this model and develop a microscopic model for the individual diagonal components of the stress tensor that determine the axial response of semi-flexible polymer hydrogels. This microscopic model predicts that the magnitude of these stress components depends inversely on the characteristic strain for the onset of nonlinear shear stress, which we confirm experimentally by shear rheometry on fibrin gels. Moreover, our model predicts a transient behavior of the normal stress, which is in excellent agreement with the full time-dependent normal stress we measure.Comment: 12 pages, 8 figure

    Anomalous Discontinuity at the Percolation Critical Point of Active Gels

    Get PDF
    We develop a percolation model motivated by recent experimental studies of gels with active network remodeling by molecular motors. This remodeling was found to lead to a critical state reminiscent of random percolation (RP), but with a cluster distribution inconsistent with RP. Our model not only can account for these experiments, but also exhibits an unusual type of mixed phase transition: We find that the transition is characterized by signatures of criticality, but with a discontinuity in the order parameter.Netherlands Organization for Scientific Research. Foundation for Fundamental Research on Matter (Netherlands

    Angular redistribution of near-infrared emission from quantum dots in 3D photonic crystals

    Get PDF
    We study the angle-resolved spontaneous emission of near-infrared light sources in 3D photonic crystals over a wavelength range from 1200 to 1550 nm. To this end PbSe quantum dots are used as light sources inside titania inverse opal photonic crystals. Strong deviations from the Lambertian emission profile are observed. An attenuation of 60 % is observed in the angle dependent radiant flux emitted from the samples due to photonic stop bands. At angles that correspond to the edges of the stop band the emitted flux is increased by up to 34 %. This increase is explained by the redistribution of Bragg-diffracted light over the available escape angles. The results are quantitatively explained by an expanded escape-function model. This model is based on diffusion theory and adapted to photonic crystals using band structure calculations. Our results are the first angular redistributions and escape functions measured at near-infrared, including telecom, wavelengths. In addition, this is the first time for this model to be applied to describe emission from samples that are optically thick for the excitation light and relatively thin for the photoluminesence light.Comment: 24 pages, 8 figures (current format = single column, double spaced

    Visualizing the strain field in semiflexible polymer networks: strain fluctuations and nonlinear rheology of F-actin gels

    Full text link
    We image semi-flexible polymer networks under shear at the micrometer scale. By tracking embedded probe particles, we determine the local strain field, and directly measure its uniformity, or degree of affineness, on scales of 2-100 micron. The degree of nonaffine strain depends on polymer length and crosslink density, consistent with theoretical predictions. We also find a direct correspondence between the uniformity of the microscale strain and the nonlinear elasticity of the networks in the bulk.Comment: 9 pages (double-spaced) of text, 4 figures + 1 supplementary figur

    Strain-driven criticality underlies nonlinear mechanics of fibrous networks

    Get PDF
    Networks with only central force interactions are floppy when their average connectivity is below an isostatic threshold. Although such networks are mechanically unstable, they can become rigid when strained. It was recently shown that the transition from floppy to rigid states as a function of simple shear strain is continuous, with hallmark signatures of criticality [Sharma et al., Nature Phys. 12, 584 (2016)]. The nonlinear mechanical response of collagen networks was shown to be quantitatively described within the framework of such mechanical critical phenomenon. Here, we provide a more quantitative characterization of critical behavior in subisostatic networks. Using finite-size scaling we demonstrate the divergence of strain fluctuations in the network at well-defined critical strain. We show that the characteristic strain corresponding to the onset of strain stiffening is distinct from but related to this critical strain in a way that depends on critical exponents. We confirm this prediction experimentally for collagen networks. Moreover, we find that the apparent critical exponents are largely independent of the spatial dimensionality. With subisostaticity as the only required condition, strain-driven criticality is expected to be a general feature of biologically relevant fibrous networks

    Recognition of 3-D Objects from Multiple 2-D Views by a Self-Organizing Neural Architecture

    Full text link
    The recognition of 3-D objects from sequences of their 2-D views is modeled by a neural architecture, called VIEWNET that uses View Information Encoded With NETworks. VIEWNET illustrates how several types of noise and varialbility in image data can be progressively removed while incornplcte image features are restored and invariant features are discovered using an appropriately designed cascade of processing stages. VIEWNET first processes 2-D views of 3-D objects using the CORT-X 2 filter, which discounts the illuminant, regularizes and completes figural boundaries, and removes noise from the images. Boundary regularization and cornpletion are achieved by the same mechanisms that suppress image noise. A log-polar transform is taken with respect to the centroid of the resulting figure and then re-centered to achieve 2-D scale and rotation invariance. The invariant images are coarse coded to further reduce noise, reduce foreshortening effects, and increase generalization. These compressed codes are input into a supervised learning system based on the fuzzy ARTMAP algorithm. Recognition categories of 2-D views are learned before evidence from sequences of 2-D view categories is accumulated to improve object recognition. Recognition is studied with noisy and clean images using slow and fast learning. VIEWNET is demonstrated on an MIT Lincoln Laboratory database of 2-D views of jet aircraft with and without additive noise. A recognition rate of 90% is achieved with one 2-D view category and of 98.5% correct with three 2-D view categories.National Science Foundation (IRI 90-24877); Office of Naval Research (N00014-91-J-1309, N00014-91-J-4100, N00014-92-J-0499); Air Force Office of Scientific Research (F9620-92-J-0499, 90-0083
    corecore